miércoles, 19 de enero de 2011

UNIDAD IV

ADMINISTRACION DE LA MEMORIA

4.1 GESTION DE MEMORIA

La memoria es uno de los principales recursos de la computadora, la cual debe de administrarse con mucho cuidado. Aunque actualmente la mayoría de los sistemas de cómputo cuentan con una alta capacidad de memoria, de igual manera las aplicaciones actuales tienen también altos requerimientos de memoria, lo que sigue generando escasez de memoria en los sistemas multitarea y/o multiusuario.
La parte del sistema operativo que administra la memoria se llama administrador de memoria y su labor consiste en llevar un registro de las partes de memoria que se estén utilizando y aquellas que no, con el fin de asignar espacio en memoria a los procesos cuando éstos la necesiten y liberándola cuando terminen, así como administrar el intercambio entre la memoria principal y el disco en los casos en los que la memoria principal no le pueda dar capacidad a todos los procesos que tienen necesidad de ella.
En primer lugar tenemos que distinguir claramente entre tres tipos de memoria:
Una: la memoria EEPROM donde almacenaremos el programa que haremos, esta memoria solo podrá ser leída por el pic (el pic va leyendo las instrucciones del programa almacenado en esta memoria y las va ejecutando). Al apagar el pic esta memoria no se borra.
Dos: la memoria RAM en cuyos registros se irán almacenando los valores de las variables que nosotros queramos y cuando nosotros queramos (por programa), al apagar el pic esta memoria se borra.
Tres: la memoria EEPROM para datos, es un espacio de memoria EEPROM en la que se pueden guardar variables que queremos conservar aunque se apague el pic. No se tratará aquí por ser una memoria mas difícil de emplear.

4.1.2 ADMINISTRADOR DE LA MEMORIA

El Administrador De Memoria se refiere a los distintos métodos y operaciones que se encargan de obtener la máxima utilidad de la memoria, organizando los procesos y programas que se ejecutan de manera tal que se aproveche de la mejor manera posible el espacio disponible.
Para poder lograrlo, la operación principal que realiza es la de trasladar la información que deberá ser ejecutada por el procesador, a la memoria principal. Actualmente esta administración se conoce como Memoria Virtual ya que no es la memoria física del procesador sino una memoria virtual que la representa. Entre algunas ventajas, esta memoria permite que el sistema cuente con una memoria más extensa teniendo la misma memoria real, con lo que esta se puede utilizar de manera más eficiente. Y por supuesto, que los programas que son utilizados no ocupen lugar innecesario
4.1.3 JERARQUIA DE LA MEMORIA

Se conoce como jerarquía de memoria a la organización piramidal de la memoria en niveles, que tienen los ordenadores. Su objetivo es conseguir el rendimiento de una memoria de gran velocidad al coste de una memoria de baja velocidad, basándose en el principio de cercanía de referencias.
Los puntos básicos relacionados con la memoria pueden resumirse en:
    * Cantidad
    * Velocidad
    * Coste

4.1.4 ESTRATEGIAS PARA LA ADMINISTRACION DE LA MEMORIA

La memoria principal puede ser considerada como un arreglo lineal de localidades de almacenamiento de un byte de tamaño. Cada localidad de almacenamiento tiene asignada una dirección que la identifica.

²  POLITICAS Y FILOSOFIA DE LA ADMINISTRACION DE LA MEMORIA.
La memoria principal es el lugar donde el CPU lee las instrucciones a ejecutar, asi como algunos datos a emplear.
Una de las funciones básicas que debe implementar un SO es la Administración de la Memoria para tener un control sobre los lugares donde están almacenados los procesos y datos que actualmente se están utilizando.

²  MECANISMOS DE ASIGNACION.
Existen 3 mecanismos de Asignación:
1. ASIGNACIÓN DE UNA PARTICIÓN. En la memoria se considera la existencia de una sola partición, esto es, se tiene la capacidad de ejecutar un proceso. La partición es toda la memoria, cuya administración corre por cuenta del usuario, o sea, no hay un sistema operativo.
2. ASIGNACIÓN DE DOS PARTICIONES. La memoria se divide en 2 bloques. En una partición se carga el Sistema Operativo y en la otra el programa del usuario. Es el concepto de Sistema Operativo Monousuario.
3. ASIGNACIÓN DE MULTIPLES PARTICIONES. La memoria es dividida en varias particiones una para el Sistema Operativo y las demás para los procesos de usuarios u otras funciones especiales del Sistema Operativo. Este es el concepto teórico de asignación de memoria en los Sistemas Operativos de Multiparticiones y de Multitarea.
4.1.5 MULTIPROGRAMACION CON PARTICIONES FIJAS Y VARIABLES
Para poder implementar la multiprogramación, se puede hacer uso de particiones fijas o variables en la memoria. En el caso de las particiones fijas, la memoria se puede organizar dividiéndose en diversas partes, las cuales pueden variar en tamaño. Esta partición la puede hacer el usuario en forma manual, al iniciar una sesión con la máquina.
Una vez implementada la partición, hay dos maneras de asignar los procesos a ella. La primera es mediante el uso de una cola única que asigna los procesos a los espacios disponibles de la memoria conforme se vayan desocupando. El tamaño del hueco de memoria disponible es usado para localizar en la cola el primer proceso que quepa en él. Otra forma de asignación es buscar en la cola el proceso de tamaño mayor que se ajuste al hueco, sin embargo hay que tomar en cuenta que tal método discrimina a los procesos más pequeños. Dicho problema podría tener solución si se asigna una partición pequeña en la memoria al momento de hacer la partición inicial, el cual sería exclusivo para procesos pequeños.

4.2 MEMORIA REAL

La memoria real o principal es en donde son ejecutados los programas y procesos de una computadora y es el espacio real que existe en memoria para que se ejecuten los procesos. Por lo general esta memoria es de mayor costo que la memoria secundaria, pero el acceso a la información contenida en ella es de más rápido acceso. Solo la memoria cache es más rápida que la principal, pero su costo es a su vez mayor.

4.2.1 ADMINISTRACION DE LA MEMORIA CON MAPA DE BITS

Este tipo de administración divide la memoria en unidades de asignación, las cuales pueden ser tan pequeñas como unas cuantas palabras o tan grandes como varios kilobytes. A cada unidad de asignación le corresponde un bit en el mapa de bits, el cual toma el valor de 0 si la unidad está libre y 1 si está ocupada (o viceversa). Un mapa de bits es una forma sencilla para llevar un registro de las palabras de la memoria en una cantidad fija de memoria, puesto que el tamaño del mapa sólo depende del tamaño de la memoria y el tamaño de la unidad de asignación.

4.2.2 ADMINISTRACION DE LA MEMORIA CON LISTAS ENLAZADAS

Mantiene una lista enlazada de segmentos de memoria asignados y libres, donde un segmento es un proceso o un hueco entre dos procesos.

•Si la lista se ordena por dirección es más fácil su actualización.
•Si hay dos listas, una para memoria usada y otra para huecos, la asignación es más rápida, pero la liberación es más lenta
•Ocurre lo mismo para asignar hueco de intercambio.

4.2.3 DISTRIBUCION DEL ESPACIO PARA INTERCAMBIO

En algunos sistemas, cuando un proceso esta en la memoria, no se le puede asignar espacio en disco. Cuando deba intercambiarse, puede colocarse en alguna otra parte del disco.los algoritmos para administrar el espacio de intercambio son los mismos que se emplean para administrar la memoria principal.
En otros sistemas, cuando se crea un proceso, el espacio para intercambio se asigna para el en disco. Cada ves que el proceso se intercambia, siempre se cambia a su espacio asignado, en lugar de dirigirse a un lugar diferente en cada ocasión. Cuando el proceso sale, se desasigna el espacio para el intercambio.

4.3 MEMORIA VIRTUAL

Cómo la memoria virtual se mapea a la memoria físicaLa Memoria virtual es un concepto que permite al software usar más memoria principal que la que realmente posee el ordenador. La mayoría de los ordenadores tienen cuatro tipos de memoria: registros en la CPU, la memoria cache (tanto dentro como fuera del CPU), la memoria física (generalmente en forma de RAM, donde la CPU puede escribir y leer directa y razonablemente rápido) y el disco duro que es mucho más lento, pero también más grande y barato.
Muchas aplicaciones requieren el acceso a más información (código y datos) que la que se puede mantener en memoria física.

4.3.1 PAGINACION MEMORIA VIRTUAL

En sistemas operativos de computadoras, los sistemas de paginación de memoria dividen los programas en pequeñas partes o páginas. Del mismo modo, la memoria es dividida en trozos del mismo tamaño que las páginas llamados marcos de página. De esta forma, la cantidad de memoria desperdiciada por un proceso es el final de su última página, lo que minimiza la fragmentación interna y evita la externa.
En un momento cualquiera, la memoria se encuentra ocupada con páginas de diferentes procesos, mientras que algunos marcos están disponibles para su uso. El sistema operativo mantiene una lista de estos últimos marcos, y una tabla por cada proceso, donde consta en qué marco se encuentra cada página del proceso. De esta forma, las páginas de un proceso pueden no estar contiguamente ubicadas en memoria, y pueden intercalarse con las páginas de otros procesos.
4.3.2 SEGMENTACION MEMORIA VIRTUAL

Es un esquema de manejo de memoria mediante el cual la estructura del programa refleja su división lógica; llevándose a cabo una agrupación lógica de la información en bloques de tamaño variable denominados segmentos. Cada uno de ellos tienen información lógica del programa: subrutina, arreglo, etc. Luego, cada espacio de direcciones de programa consiste de una colección de segmentos, que generalmente reflejan la división lógica del programa. La segmentación permite alcanzar los siguientes objetivos:
   1. Modularidad de programas: cada rutina del programa puede ser un bloque sujeto a cambios y recopilaciones, sin afectar por ello al resto del programa.
   2. Estructuras de datos de largo variable: ejm. Stack, donde cada estructura tiene su propio tamaño y este puede variar.
   3. Protección: se puede proteger los módulos del segmento contra accesos no autorizados.
   4. Comparación: dos o más procesos pueden ser un mismo segmento, bajo reglas de protección; aunque no sean propietarios de los mismos.
   5. Enlace dinámico entre segmentos: puede evitarse realizar todo el proceso de enlace antes de comenzar a ejecutar un programa. Los enlaces se establecerán solo cuando sea necesario.

4.3.3 ALGORITMO DE SUSTITUCION DE PÁGINAS

Cuando ocurre una falla de página, el sistema operativo tiene que escoger la página que sacará de la memoria para que pueda entrar la nueva página. Si la página que se eliminará fue modificada mientras estaba en la memoria, se debe reescribir en el disco a fin de actualizar la copia del disco, pero si no fue así (p. ej., si la página contenía texto de programa), la copia en disco ya estará actualizada y no será necesario reescribirla. La nueva página simplemente sobrescribe la que está siendo desalojada.

4.3.4 ASPECTOS DE DISEÑO PARA EL SISTEMA

En las secciones anteriores hemos explicado cómo funciona la paginación y hemos presentado algunos de los algoritmos de reemplazo de páginas básicos. Sin embargo, no basta con conocer los aspectos mecánicos del funcionamiento. Para diseñar un sistema, necesitamos saber mucho más si queremos lograr que funcione bien. La diferencia es similar a la que existe entre saber cómo se mueven la torre, el caballo, el alfil y las demás piezas de ajedrez, y ser un buen jugador En las siguientes secciones examinaremos otros aspectos que los diseñadores de sistemas operad deben considerar detenidamente si quieren obtener un buen rendimiento de un sistema de paginación 

4.3.5 LIBERACION DE PÁGINAS

Un proceso usuario puede emitir una “liberación voluntaria de página” para liberar el marco de página cuando ya no necesitara esa página  
Se puede eliminar el “desperdicio” y acelerar la ejecución.
El inconveniente es que la incorporación de mandatos de liberación de páginas dentro de los programas de usuarios puede ser peligroso y retrasar el desarrollo de aplicaciones.
“Los compiladores y S. O. deberían detectar automáticamente situaciones de liberación de página mucho antes de lo que es posible con estrategias de conjuntos de trabajo”.

No hay comentarios:

Publicar un comentario